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When a drop of liquid containing particles is allowed to evaporate from a substrate, the flow induced by the
liquid evaporating from the drop edge carries the particles to the edge. If these particles prevent the drop edge
from receding as the evaporation proceeds, then more particles will be accumulated near the drop edge
resulting in the formation of a deposit that resembles coffee rings. We determine the capillary force on the
particles near a drop edge and the effect of the particles on the gas-liquid-substrate contact angle to derive a
condition that must be satisfied for particles to form the ringlike pattern.
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I. INTRODUCTION

Drying of a particle-laden liquid droplet resting on a sub-
strate is both an interesting and an important phenomenon
that has attracted several investigations �e.g., Deegan et al.
�1,2�, Popov �3�, and Truskett and Stebe �4��. Flow induced
by evaporation, together with capillary forces on the particles
partially immersed in the liquid, is believed to play an im-
portant role in producing interesting patterns of the particles
left behind on the substrate when the liquid evaporation is
complete. The ring formations when a drop of coffee evapo-
rates from a cup and the salt lines left behind in driveways
upon melting of snow and water evaporation are examples of
this phenomenon. Recent interest in the phenomenon also
arises from potential applications in producing photonic
crystals by drying a film of liquid containing small particles
�Denkov et al. �5,6�, Dushkin et al. �7�, Adachi et al. �8�, and
Gigault et al. �9�� and the microfluidic applications relying
on the large shear rates generated in thin liquid films from
liquid evaporation �Jing et al. �10��. Formation of particle
rings is undesirable in applications that require uniform
deposition of the particles on the substrate and desirable in
others, such as jet ink printing, where it aids in producing
sharper images.

Deegan et al. �1� explained the formation of particle rings
as follows. The presence of the particles near the drop edge
facilitates the pinning of the contact line at the drop edge
separating liquid, gas, and substrate. Since the liquid evapo-
ration rate is the greatest at the edge, the liquid from the bulk
of the drop flows outward, toward the edge of the drop, and
carries with it the particles resulting in a formation of a par-
ticle ring near the drop edge. The mechanism by which the
particles facilitate the contact line pinning was not addressed.

In fact, not all particles facilitate the contact line pinning.
We have observed in our laboratory �cf. Sec. II� that, while
the contact line remains pinned for smaller particles, the con-
tact line and the particles both move toward the center of the
drop when particles are not small or if the particle volume
fraction is too small. Shmuylovich et al. �11� also observed
that the contact line does not always remain pinned. These

investigators reported that the contact line repeatedly pins
and depins as the drop evaporates. The present study aims at
understanding why the pinning of the contact line is facili-
tated in some cases and not in the others. We study in detail
the forces acting on particles near the drop edge and the
effect of the particles on the contact line angle to derive a
criterion for predicting conditions under which the particles
will pin the contact line.

In Sec. III, we analyze the problem of determining the
capillary force on a particle or a ring of particles protruding
from the gas-liquid interface near a drop edge. It is assumed
that the drop edge remains circular and pinned. We find that
the behavior of the capillary force as a function of the posi-
tion of the particles for small particles is not significantly
different from that for the large particles and that force also
does not significantly depend on the number of particles near
the drop edge. This suggests that the pinning phenomenon is
not directly related to the capillary force acting on the par-
ticle. Next, we determine the effect of the presence of the
particles on the contact angle at the drop edge. In order that
the particles pin the contact line, this angle should be con-
stant or increasing with time as the evaporation proceeds.
The effect of the decreasing volume of the liquid due to
evaporation is to reduce the contact angle while the opposite
is the effect of the protruding particles. If the rate at which
the particles arriving at the drop edge increase the contact
angle exceeds the rate at which the contact angle is decreased
by the evaporation, then the contact line will remain pinned.
A criterion is derived for this condition to hold in terms of
particle and drop radii and the volume fraction of the par-
ticles in Sec. IV. Smaller particle radius and larger volume
fractions, both of which lead to greater number of particles
near the drop edge, favor the contact line pinning. When the
protruding particles are at rest, the viscous drag force, which
is proportional to the liquid velocity, is balanced by the cap-
illary force. Since the smaller particles must get much closer
to the drop edge before they can protrude from the drop, they
also experience larger fluid velocity than the larger particles
and this further facilitates the pinning by the smaller par-
ticles. The criterion is shown to be in agreement with the
limited experimental data obtained in our laboratory.*Deceased.
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II. EXPERIMENTAL OBSERVATIONS

Suspensions used in our experiments were purchased
from Duke Scientific Corporation. The particles were made
of polystyrene �density of 1.05 g /cm3�. Suspensions of these
particles in water were stabilized by the manufacturer by
adding trace amounts of an anionic surfactant and other un-
specified additives �less than 0.5% by weight�. Experiments
were carried out for suspensions with mean diameters in the
range of 1–70 �m. The standard deviation in particle diam-
eters for each suspension was less than 2% of the mean di-
ameter. The volume fraction of the particles in suspensions
obtained from the manufacturer was in the range of 0.002–
0.018. A suspension of volume fraction lower than the one
supplied by the manufacturer was prepared by adding de-
ionized water. The experiments were carried out by evapo-
rating suspensions at ambient temperature and humidity on
either glass �Fisherbrand *Superfrost* disposable micro-
scope slides from Fisher Scientific� or silicon substrate. The
observed behaviors for both substrates were similar. Both
substrates were pretreated to render them hydrophilic
through a series of steps. First, the substrate was immersed in
a 0.1N nitric acid for 5 min to remove the organic com-
pounds from the surface. Next, the substrate was washed
with de-ionized water and acetone. This was followed by
immersing in a 15% hydrofluoric acid for 30 s, rinsing with
de-ionized water, and drying.

A specified amount �1.5–5 �l� of a suspension drop was
placed on the substrate. The drop quickly spread on the sub-
strate and attained an approximately circular base within few
seconds. The drop’s extent along two mutually orthogonal
directions was noted and a geometric mean of the two was
taken. This mean will be referred to as the initial diameter of
the deposited droplet. The evaporation process was recorded
using a computer software �LOGITECH IMAGESTUDIO� that al-
lowed recording of the evaporation process as a movie file
using the option Create Animations.

Detailed observations for various particle sizes, volume
fractions, and droplet radii are reported elsewhere �Su �12�
and Liu �13��. Results for few representative cases are pre-
sented in Sec. IV where we compare the prediction of the
theory with the experiments. Here, we summarize important
observations. For suspensions containing 1 �m diameter
particles, the experiments were carried out for particle vol-
ume fraction � ranging from 0.000 25 to 0.005. In all cases
the particles were advected by the liquid and formed rings
near the edge of the drop. The contact line remained pinned
throughout the evaporation process. For suspensions contain-
ing 3 �m diameter particles, a mixed behavior was observed
with depinning observed only for the lowest volume fraction
studied ��=0.000 25�. The behavior for this smallest volume
fraction case requires a more detailed discussion that we
postpone until we derive the criterion in Sec. IV.

Figure 1 shows the case of a suspension of 3 �m diam-
eter particles with �=0.001. For this case, the particles pin
the contact line and form a ring close to the drop edge. We
see two chains of particles. The drop edge is clearly visible
in the figure. A particle arriving near the drop edge is seen to
quickly move laterally toward one of the chains to increase
the length of the chains. As more particles arrive at the drop

edge, the two chains become longer and eventually merge
into one. The particles at the end of the chains were seen to
rotate around an axis normal to the substrate, indicating that
they did not adhere firmly to the substrate. Interestingly, the
position of the chain with respect to the drop edge remains
quite steady as more particles arrive near the drop edge and
the chains grow longer. Our theoretical calculation will ex-
plain why the distance between the row of the particles and
the drop edge remains nearly constant.

Experiments with all suspensions of particle diameters of
10 �m and greater showed that, after a brief initial outward
motion toward the edge, the particles and the drop edge be-
gin to move inward. Closer inspection revealed that the par-
ticles in these suspensions were nearly immobile presumably
because they settled quickly to the substrate and strongly
hindered their mobilities due to lubrication effects. The drop
edge, being nearly devoid of particles, depinned and started
moving inward. The receding drop edge must have caused
the nearly immobile particles in its vicinity to protrude from
the gas-liquid interface. The resulting capillary force on
those protruded particles is strong enough to overcome the
lubrication forces in the narrow gaps between the particles
and the substrate so that the particles near the edge move
quickly, aligning themselves parallel to the drop edge. Figure
2 shows images taken at various times during the evapora-
tion of a suspension containing 25 �m diameter particles on
a silicon substrate. We see that the particles away from the
drop edge are nearly immobile even though there is consid-
erable rearrangement of the particles near the receding drop
edge.

We also carried out one experiment with a bidisperse drop
containing a mixture of 50 �m diameter particles �volume
fraction of 0.014� and 3 �m diameter particles �volume frac-
tion of 0.005�. For this case the smaller particles migrated
toward the drop edge pinning the contact line while the
larger particles migrated toward the center of the drop result-
ing in the segregation of the particles. Once again the larger
particles were nearly immobile while the small particles were
seen to migrate near the drop edge and pin the contact line.
The decreasing volume of the liquid due to evaporation
eventually must have caused the larger particles away from
the center of the drop to begin protruding from the gas-liquid
interface. The resulting capillary force must then be respon-
sible for gradually moving the larger particles toward the
drop center where they eventually formed a packed mono-
layer.

FIG. 1. �Color online� Formation of chains for a suspension of
3 �m diameter particles. The picture also shows a layer of liquid
ahead of the particles and the rotating particles at the edge of the
chains.
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In addition to the above, we also carried out experiments
with drops of particle-free de-ionized water and the liquid
withdrawn from the suspensions used in the above study to
see what role the surfactant and other impurities present in
the suspension may play in the evaporation process. Evapo-
ration of the de-ionized water proceeded in two stages. Dur-
ing the first stage, which lasted about 1 min, the contact line
remained pinned. During the second stage the contact line
moved inward smoothly and the drop radius decreased
smoothly with time. This duration was typically about 5 min
long for a 1.5 �l de-ionized drop evaporating under ambient
conditions at approximately 50% relative humidity. This time
is approximately one-half to one-third the time typically
taken for suspensions drops with the same volume. This two-
stage behavior is consistent with a commonly accepted hy-
pothesis that the contact angles for the advancing and reced-
ing drops are different. Behavior of the liquid withdrawn
from the suspension, which contained surfactants and other
additives, was different. The first stage of the pinned contact
line, if present at all, was of very short duration. More inter-
estingly, the drop edge did not remain smooth as the drop
began to recede. Jetlike protrusions were seen emanating
from the drop edge. As the time proceeded, this edge became
rougher leaving a fractal-like deposit when the drop evapo-
ration was complete. We believe that this results from an
instability mechanism similar to the one seen during the
spreading of surfactant drop and explained by Troian et al.
�14�. The instability of the smooth circular shape of the re-

ceding drop edge, however, is not important in the analysis
presented here that is primarily concerned with the problem
of determining the capillary forces acting on the partially
wetted particles near drop edge and the conditions under
which the contact line remains pinned. Indeed, our experi-
ments with suspensions of small particles did not show the
instability typical of the particle-free liquid. Jetlike protru-
sions were seen only for large particle suspensions at rela-
tively low humidity for which the contact line depins and
moves rapidly inward.

III. CAPILLARY FORCES ON PARTICLES NEAR A DROP
EDGE

Let us consider a drop resting on the surface of a sub-
strate. We shall assume that the drop base in contact with the
substrate is a circle of radius R. Let the contact angle at the
gas-liquid-substrate contact line be denoted by �s. We shall
be interested in the case when �s is small compared to unity,
i.e., when the liquid-substrate interactions are favorable and
the drop spreads well on the substrate. Let h�x1 ,x2 , t� repre-
sent the height of the liquid above the substrate at time t and
�x1 ,x2� being the spatial coordinates in the plane of the sub-
strate with the center of the circular drop base as the origin.
The unit outward normal n� at the gas-liquid interface is given
by

n� = F�e�3 − �� h� , �1�

where �� =e�1�� /�x1�+e�2�� /�x2� is the gradient operator in the
plane parallel to the substrate, e�k �k=1,3� are the unit vectors
along the coordinate axes, and F−2=1+ ��� h�2. The pressure
inside a stationary drop is given by

p = pa + �g�h − x3� + ��� · n� , �2�

where pa is the pressure outside the drop, � is the density of
the liquid, g is the magnitude of the gravitational accelera-
tion, and � is the gas-liquid interfacial tension. Here, we
have assumed that the gas density is negligibly small.

As noted by Deegan et al. �1�, the rate of evaporation of
the liquid from the gas-liquid interface can be determined by
solving the diffusion equation for the water vapor in the gas
phase. Since the time for water vapor to diffuse over a dis-
tance comparable to the drop radius R �about 2–4 mm� is
much smaller than the time for the evaporation process in
our experiments, the diffusion equation can be approximated
by the quasisteady Laplace equation for the concentration of
the water vapor in the space outside the drop. When the
contact angle is small, the height of the drop is small com-
pared to the radius, and, for the purpose of determining the
mass flux of water vapor at the drop surface, the drop may be
modeled as a thin disk to yield

ṁev = �uev =
�U0R

�R2 − r2�1/2 , �3�

where ṁev is the evaporative mass flux, � is the density of
liquid water, r2=x1

2+x2
2, and

FIG. 2. �Color online� A sequence of events during the evapo-
ration of a drop containing 25 �m diameter particles. The contact
line steadily moves inward. Notice that only the particles near the
drop edge rearrange and move inward as the drop edge moves to-
ward the center. The final deposit consisted of nearly packed mono-
layer of particles surrounding a multilayer deposit.
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U0 =
2Dg�Psat − Pv�Mw

��RRgT
. �4�

Here, Dg is the diffusivity of water vapor in the gas phase,
Psat is the vapor pressure of water at temperature T of the
drop surface, Pv is the partial pressure of the water vapor in
the ambient gas, Mw is the molecular weight of water, and Rg
is the universal gas constant. We shall refer to U0 as the
characteristic evaporation velocity. It should be noted that
the mass flux increases as r increases and becomes infinite at
r=R. This, of course, is a consequence of assuming that the
drop is infinitesimally thin. We note here that an expression
for the evaporative mass flux has also been given for a
spherical cap model of the drop by Popov �3�. His result,
which is valid for arbitrary contact angles, agrees with the
simple one presented here in the limit of vanishingly small
contact angle.

When the contact line remains pinned we can use Eq. �3�
to estimate the rate at which the volume of the drop will vary
with time,

dV

dt
= − 2�R2U0. �5�

High evaporation rate near the pinned contact line causes
a flow in the plane of the substrate with the magnitude of the
velocity given by O�U0R /h0�, where h0 is the height of the
drop at its center, i.e., at r=0. To drive this flow, a pressure
gradient of magnitude O��U0R /h0

3� must establish in the
plane parallel to the substrate. This gradient, in turn, perturbs
the shape of the stationary drop that can be estimated using
Eq. �2� to be given by h� /h0=O�CaR4 /h0

4�, where h� is the
perturbation in the drop height from the stationary, non-
evaporating, drop due to evaporation-induced viscous flow
and

Ca =
�U0

�
�6�

is the capillary number representing the strength of viscous
forces compared to the interfacial tension forces. For our
experimental conditions, Ca is O�10−8� while R /h0=O��s� is
O�10−1�. Thus, the effect of the evaporation-induced flow on
the shape of the drop is negligible. Substituting for the unit
normal vector from Eq. �1� into Eq. �2� and taking the gra-
dient of the latter yield

�� ��gh − ��2h� = 0, �7�

with an error of O�Ca�s
−4� as explained above. Note also that

we have also set F in Eq. �1� to unity. The error introduced in
doing so is O��s

2�. We shall further simplify the problem of
determining the drop shape by neglecting the gravitational
term in the above equation. This is justified strictly when the
Bond number �gR2 /� is small compared to unity. In our
experiments, this number is actually comparable to unity as
the drop radius was typically 2 mm. With �=1 g /cm3, g
=981 cm /s2, and �=30 dyn /cm, the Bond number is about
2. Our primary interest here is in determining the effect of
protruding particles, and the more relevant Bond number for
that purpose is based on the radius a of the particles instead

of the drop radius R. Since a /R in our experiments is very
small, the neglect of the gravity term is justified as far as the
shape perturbation caused by the protruding particle and the
capillary force on the particle is concerned. Equation �7�
therefore reduces to the much simpler Poisson equation,

�2h + C�t� = 0, �8�

where C�t� is the integration constant.
When no particles are protruding from the gas-liquid in-

terface, the drop shape is given by

h	�r�,t� = h0�t��1 −
r2

R2� . �9�

The initial value of the drop height, h0�0�, is related to the
contact angle at the three-phase contact line r=R by

h0�0� = �R/2�tan �s. �10�

Since the volume of the drop is given by V= 1
2�h0R2, the rate

at which the drop height varies is given by, using Eq. �5�,

dh0

dt
= − 4U0. �11�

In the absence of the particles, this will reduce the contact
angle at the three-phase contact line and the drop will begin
to recede. The outward radial flow of the liquid, however,
carries the particles toward the drop edge until the particles
almost touch the gas-liquid interface. We assume that a very
thin liquid film sandwiched between the particle surface and
the gas-liquid interface will drain away so that the hydrody-
namic force acting on the particles pushing them toward the
drop edge will force the particles to become partially dewet-
ted and the particles will begin to protrude from the gas-
liquid interface. This protrusion will eventually lead to a cap-
illary force on the particles that will balance the
hydrodynamic force and arrest the further outward motion of
the particles. Determining this equilibrium position and the
effect of these protruding particles on the contact line angle
at the substrate is the primary purpose of the present analy-
sis.

Let us therefore consider the effect of protruding particles.
The experiments showed that the particles’ motion is arrested
at approximately the same radial position from the drop cen-
ter. We therefore consider N particles protruding with their
centers at �r0 ,�n ,a�, n=1,2 , . . . ,N. The cylindrical coordi-
nates used here are related to the Cartesian coordinates in-
troduced earlier by x1=r cos �, x2=r sin �, and x3=z. We
have examined a number of problems including a single par-
ticle, a pair of particles, a chain of touching particles, and the
equispaced particles �12�. To our surprise, the radial compo-
nent of the capillary force as a function of r0 varied very
little among all the examined cases. On the other hand, this is
consistent with the experimental observations that the radial
position of the protruding particles does not appear to change
as additional particles advected by the fluid begin to pro-
trude. We shall present here the analysis for the case of eq-
uispaced particles for which

�n = 2��n − 1�/N, n = 1,2, . . . ,N . �12�
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To determine the capillary force on the particles one must
first determine the position of the contact line on each of the
protruding particles. For the case of equispaced particles, it
will suffice to consider a representative particle, n=1, with
its center along the x1 axis. Let �p denote the contact angle
for the line separating the particle, liquid, and gas phases. We
require that along this contact line,

n� · n�p = cos �p, �13�

where n�p is the unit outward normal on the surface of the
particle. We introduce a cylindrical coordinate system
�
 ,� ,z� passing through the center of the particle such that

x1 = r0 + 
 cos �, x2 = 
 sin �, and x3 = z . �14�

Let 
=
c��� describe the contact line at the particle surface.
Using

n�p = ��z − a�e�z + 
ce�
�/a , �15�

e�z and e�
 being the unit vectors in the particle-centered cy-
lindrical coordinate system, and Eq. �1� for the unit outward
normal at the gas-liquid interface, Eq. �13� reduces to

h − 

�h

�

= a�1 + cos �p� at 
 = 
c��� . �16�

Since the contact line must also lie on the surface of the
particle, we have an additional condition,

h = a + �a2 − 
2�1/2 at 
 = 
c��� . �17�

The positive sign on the right-hand side of the above equa-
tion assumes that less than half of the particle is protruding
from the gas-liquid interface.

Instead of prescribing similar two conditions for the con-
tact line at the substrate, we shall assume that the gas-liquid-
substrate contact line remains circular and pinned. Thus, we
require

h = 0 at r = R . �18�

We shall determine the contact angle at the drop edge once
the drop shape is determined to derive a condition under
which the assumption of pinned contact line is justified in
Sec. IV.

We have developed two methods for solving the problem
described by Eqs. �8� and �16�–�18�. One method, referred to
as method A, is described below while the second one, re-
ferred to as method B, is described in Appendix C.

Method A

In this method, we assume that the gas-liquid-particle
contact line is given by


c��� = 
0 + 
���� with �
�� � 
0, �19�

where 
0 is independent of the polar angle �. In other words,
we assume that the contact line to leading order is a circle in
a plane parallel to the substrate. We shall examine the con-
ditions under which this approximation is justified later in
the section. Method B described in Appendix C is more gen-
eral in that it allows the approximate plane of the contact line

to be at an arbitrary angle to the normal to the substrate.
Substituting Eq. �19� into Eqs. �16� and �17� we obtain

�h − 

�h

�

�


=
0

− 
�
0� �2h

�
2�

=
0

+ O�
�2/a�

= a�1 + cos �p� , �20�

�h + 
�
�h

�

�


=
0

= a + �a2 − 
0
2�1/2 −


0
�

�a2 − 
0
2�1/2 + O�
�2/a� .

�21�

We shall use the method of multipole expansions �15� to
determine h, 
0, and 
�. Accordingly, we write

h�r�,t� = h	�r�,t� + �
n=0

	

�− 1�nAn
�n

�r0
nG�r� − r�0� , �22�

where r�0=r0e�r, An are the coefficients of the multipoles
aligned along the radial direction, and G is the Green’s func-
tion satisfying

�2G�r� − r�0� + B =
2�

r0
�
n=1

N


�r − r0�
�� − �n� , �23�

G = 0 at r = R , �24�

	
r=0

R 	
�=0

2�

rGdrd� = 0. �25�

Physically, G represents the solution of a two-dimensional
heat conduction problem with N heat sinks uniformly distrib-
uted along the circle r=r0 with the temperature at r=R main-
tained at a constant value equal to zero. In addition, a source
of strength B is distributed throughout 0�r�R so that the
average value of G over the circle is zero. It may be noted
that G and its derivatives satisfy the differential equation
�Eq. �8�� and the boundary condition �Eq. �18��, and there-
fore Eq. �22� represents a general solution for h. The first
term on the right-hand side of Eq. �22� represents the drop
height in the absence of the protruding particles, while the
second term represents the effect of the protruding particles.
Condition �25� is necessary in order to ensure that the total
volume of the liquid remains unchanged when the particles
protrude from the gas-liquid interface. Note also that Eq.
�23� renders G a periodic function of � with a period 2� /N.
An expression for G is given in Appendix A.

The multipole coefficients An and the contact line vari-
ables 
0 and 
� must be determined by satisfying the condi-
tions �Eqs. �20� and �21�� at the contact line. Since G is a
periodic function of �, it will suffice to determine these con-
ditions on a representative particle placed on the x1 axis. For
this purpose, we expand h in the cylindrical coordinate sys-
tem with its axis passing through the center of the particle at
r�0=r0e�1. Noting that G=ln 
+Gr, where Gr is the regular
part of G near r�=r�0 �Appendix A�, h may be expressed as
�Sangani and Yao �15��
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h = �
n=0

	

fn�
�cos n� , �26�

with

f0 = A0 ln 
 + E0 − s
2, �27�

fn = �− 1�n−1�n − 1� ! An
−n + En
n, n � 1. �28�

Here, s= �C+A0B� /4 and

En =
1

n! �
m=0

	

�− 1�n+mAm
�m+nGr

�r0
m+n + 
n0h	�r0,t� − 2Cr0
n1,

�29�

where the derivatives of Gr are to be evaluated at r�=r0e�1. An
expression for Gr is given in Appendix A. As shown there,

g0 
 Gr�r0,r0� = ln� NRNr0
N−1

R2N − r0
2N� + N�1 −

r0
2

R2�2

, �30�

g1 
 − � �Gr�r�,r0�
�r0

�
r�=r0e�1

=
N − 1

2r0
+

Nr0
2N−1

R2N − r0
2N −

2Nr0

R2 �1 −
r0

2

R2� . �31�

It may be noted that for 

R−r0�R, g0=O�ln 
� and g1
=O�1 /
�. In general, the nth derivative of Gr is O�
−n�.

The particles protrude from the gas-liquid interface at a
location where the drop height is comparable to the diameter
of the particles. Therefore, 

R−r0=O�a /�s�. We shall be
interested in the case 
�R. This condition is satisfied when
h0�t��a. For this case, it can be shown that Gr=O�ln 
� and
�nGr /�r0

n=O�
−n�, n�1. Substituting these orders of magni-
tude estimates in Eqs. �28� and �29�, we find that En
=A0�O�
−n�� and fn=A0O��
0 /
�n�. Next, we expand 
� as
given by


� = �
n=1

	


n cos n� �32�

and substitute it into Eqs. �20� and �21� to find that 
n /
0
=O��
0 /
�n�. Considering only the terms up to n=1 we ob-
tain

2A1 = − 
1�A0 + 2s
0
2� , �33�

E1
0 + �
1/
0��A0/2 − 3s
0
2 + 
0

2/�a2 − 
0
2�1/2� = 0, �34�

A0�ln 
0 − 1� + s
0
2 + E0 = a�1 + cos �p� , �35�

A0 ln 
0 + E0 − s
0
2 = a + �a2 − 
0

2�1/2. �36�

The above four equations, together with Eq. �29�, which ex-
presses E0 and E1 in terms of A0 and A1, can be solved for
the four unknowns, A0, A1, 
0, and 
1. These equations can
be further simplified with slight loss in accuracy by setting
s=0 �error of O��a /R��s�� and neglecting terms involving
second derivatives of Gr in evaluating E1 �error of O��s

2��.

The resulting simplified equations take the form

A0 = a�cos �0 − cos �p� , �37�


1 =
− 
0�h	� + A0g1�

A0/�2
0� + tan �0
, �38�

A1 = − �
1/2�A0, �39�

h	 = a�1 + cos �0� − A0�ln 
0 + g0� + A1g1. �40�

Here, �0 is defined by 
0=a sin �0, h	 is evaluated at r=r0,
and h	� is the derivative of h	 with r at r=r0. The above
equations can be used to evaluate 
0, 
1, and A0 as functions
of r0.

The force on the particles can be decomposed into three
parts. The first is the force due to interfacial tension acting
along the gas-liquid-particle contact line. The second is the
force due to uneven pressure distribution on the surface of
the particle with the pressure in the liquid being greater than
in the gas by ��� ·n� =−��2h=4�s. Here, s= �C+A0B� /4 as
defined earlier. Note that C=4h0�0� /R2=O��s /R�. Finally,
the third is the hydrodynamic force. We shall propose an
expression for determining the last part in Sec. IV. Expres-
sions for determining the first two are given in Appendix B.

The nonlinear set consisting of Eqs. �37�–�40� can be
solved to determine the four quantities 
1, A0, A1, and h	 as
functions of 
0. Note that these equations also contain r0,
which is related to h	 by h	=h0�1−r0

2 /R2�. We used a
MATLAB-based iterative method to determine these quantities
as functions of 
0.

The nondimensional parameters governing the problem
are the contact angles at the particle and substrate surfaces
given, respectively, by �p and �s and the ratio of the particle
to the deposited drop radius, a /R. Figure 3 shows the contact
line radius 
0 as a function of h	 for two different values of
R /a. These two values correspond to our experiments in
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FIG. 3. Contact line radius 
0 as a function of undisturbed liq-
uid height h	 for three cases: �i� N=1, a=0.5 �m �solid line�; �ii�
N=1, a=5 �m �squares�; and �iii� N=100, a=0.5 �m �open
circles�. For all three cases R=2 mm, �p=0.2, and �s=0.1.
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which R was approximately 2 mm and the particle diameters
were 1 and 10 �m. Note that since h	 is a function of r0, 
0
as a function of the radial position r0 of the particle can, in
principle, be obtained from the results for 
0 plotted against
h	. A particle advected by the liquid will first protrude from
the gas-liquid interface at the radial position r0 such that
h	�r0� /a=2. The contact line radius is finite for this radial
position. As the particle travels further out, h	 decreases and
the gas-liquid-particle contact line radius increases. If, on the
other hand, the particle moves inward, the contact line de-
creases and remains nonzero even for radial positions with
h	 /a�2. Also shown in Fig. 3 are the results for the case
when N, the number of particles along the circle r=r0, is 100
and the particle diameter is 1 �m. We see that the results for
all three cases are indistinguishable from each other. In doing
these computations we have set Gv in Eq. �A1�, which rep-
resents the effect of the protruding particles on the total vol-
ume of the liquid in the drop, to zero. In an actual process,
h	 decreases with time at given r0 while the number of par-
ticles N at the drop edge increases. Setting Gv=0 and
h	�r0 , t�=h	�r0 ,0� should provide a reasonable approxima-
tion to what will happen in the dynamic process.

Figure 4 shows the capillary force as a function of h	.
Since the capillary number �U0 /� is very small, the motion
of the particles protruding from the gas-liquid interface is
largely determined by the magnitude of the capillary force.
We see that the capillary force is positive at h	=2a, suggest-
ing thereby that the particle experiences a radial force push-
ing it outward toward the drop edge. As the particle travels
further out, the force decreases and vanishes when h	 is ap-
proximately equal to 1.98a. The force turns negative for
smaller h	 so that the equilibrium position of the particles
corresponds roughly to the above mentioned value of h	.
Figure 4 shows results for two different particle radii and for
N=1 and N=100. Once again, we see that the results for the
three cases are essentially indistinguishable from each other.

The result that the equilibrium position of the particles is
nearly independent of the number of particles at the drop

edge is somewhat surprising but consistent with the experi-
mental observations �cf. Fig. 1� that showed that as more
particles arrive at the drop edge the radial positions of the
other protruding particles do not change. Also, the result that
the curve is nearly independent of a /R is very interesting as
it suggests that it is not possible to explain the observation
that the small particles pin the contact line while the large
particles do not on the basis of capillary force behavior for
small and large particles.

Our analysis assumed that the gas-liquid-particle contact
line is nearly circular, i.e., �
1��
0. We can now check how
well this assumption is justified. Figure 5 shows 
1 /
0 as a
function of h	 /a for two selected combinations of �p and �s.
We find that, in general, this is not a good approximation. In
fact, when �s��p, the magnitude of 
1 exceeds that of 
0 for
some values of h	. It appears that the assumption that the
contact line to leading order is circular and in the plane par-
allel to the substrate is justified only when �p is significantly
greater than �s. In Appendix C, we present an alternate
model in which the contact line plane is allowed to incline at
an arbitrary angle to the substrate. Although this model is
more accurate and predicts interesting behavior, the simpler
analysis presented in this section is adequate for deriving the
principal result of the present study, i.e., the criterion for
conditions under which the particles will aid in pinning the
contact line.

IV. CRITERION FOR THE CONTACT LINE PINNING

Our experimental observations suggest that smaller par-
ticles tend to form rings at the drop edge while larger par-
ticles tend to move toward the center of the drop dragging
with them the drop edge. Since the force versus radial posi-
tion curves for small and large particles are essentially the
same, the above observation cannot be explained solely on
the basis of the capillary force on the particles. For example,
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FIG. 4. Capillary force as a function of undisturbed liquid height
h	 for three cases: �i� N=1, a=0.5 �m �solid line�; �ii� N=1, a
=5 �m �squares�; and �iii� N=100, a=0.5 �m �open circles�. For
all three cases R=2 mm, �p=0.2, and �s=0.1.
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FIG. 5. 
1 /
0 as a function of h	 / �2a� for two cases: �i� �p

=0.2, �s=0.1 �solid line�; �ii� �p=0.1, �s=0.1 �squares�. N=1, a
=0.5 �m, and R=2 mm in both cases.
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we showed that the radial position r0 of the particles is ap-
proximately given by h	�r0�=1.98a. This will correspond ap-
proximately to 
=R−r0=0.99aR /h0�t�, where h0�t� is the
height of the drop at r=0. As h0�t� decreases with time due to
evaporation, this would suggest that the distance between the
particle and the drop edge will increase. This, however, is not
observed generally. An exception is the case of a mixture of
50 and 3 �m diameter particles where the distance between
the drop edge and the 50 �m diameter particles increases
with time. Thus, the migration of the larger particles toward
the center of the drop in the bidisperse suspension that are
pinned by the smaller may be explained by saying that the
equilibrium position of the larger protruding particles contin-
ues to shift toward the center of the drop as the drop height
decreases. Since 
 is observed to remain nearly constant in
most monodisperse suspension cases, the pinning/depinning
phenomenon must be related to the effect of the particles on
the contact angle at the drop edge.

We therefore examine how the particles protruding from
the gas-liquid interface affects the gas-liquid-substrate con-
tact line. Our analysis so far has assumed that the drop edge
is smooth and circular and pinned at r=R. This violates, in
general, the condition that the angle made by the drop at the
drop edge should equal the contact angle for the gas-liquid-
substrate system. Particles arriving near the drop edge will
increase the contact angle while the evaporation will de-
crease it. If the former effect is large enough then the drop
might spread further somewhat but the particles will eventu-
ally aid in pinning the contact line, and our assumption of the
drop edge being pinned will be justified a posteriori. Our
goal is to make a number of reasonable approximations to
derive a relatively simple criterion for pinning the contact
line. The steps include determining the increase in the con-
tact angle caused by a single particle that is in equilibrium
under the influence of capillary and hydrodynamic forces
and determining the rate at which the new particles arrive
near the drop edge.

For a single particle placed at r=r0=R−
 on the x1 axis
��=0�, the effect of the particle on the contact line angle is
the greatest at a point on the x1 axis and r=R. The contribu-
tion to the tangent of the contact angle at the substrate, ne-
glecting the higher-order multipoles and assuming that 

�R, is given by −2A0 /
. �This corresponds to a monopole
A0 and an image monopole −A0 on the other side of the drop
edge.� The next particle to protrude from the gas-liquid in-
terface in its vicinity will be immediately attracted to it be-
cause of the strong attractive capillary forces, and together
both particles will contribute −4A0 /
 to the tangent of con-
tact angle. If nc is the number of chains formed around the
drop circumference when a total of N particles is protruding,
then the angular-averaged contact angle is given by


tan �s�t�� = − �� �h	

�r
��R,t� +

2NA0

nc

� . �41�

The first term on the right-hand side is the contribution from
the undisturbed shape of the drop whose height is decreasing
because of the evaporation and the second is the leading-
order contribution from the protruding particles. The number
of chains nc remains O�1� and generally decreases with time

as more particles arrive at the drop edge and some of the
chains coalesce as described in Sec. II �cf. Fig. 1�.

In order that the contact line remains pinned, 
�s� must
not decrease as the evaporation proceeds. The first term on
the right-hand side of the above equation can be related to
the rate of evaporation using Eqs. �9� and �11� that yield

− � �h	

�r
�

r=R

= 2h0�t�/R

= 2h0�0�/R − 8U0t/R = �s�0� − 8U0t/R ,

�42�

indicating that the effect of the evaporation is to reduce the
contact angle with time. We have assumed that the contact
angle is small and, hence, tan �s��s. In order that the par-
ticles pin the contact line, the negative term on the right-hand
side of the second equality in the above expression must be
balanced by the second term on the right-hand side of Eq.
�41�. However, when the capillary force is zero, the mono-
pole A0 also vanishes, and the contribution from the protrud-
ing particles to the contact angle vanishes. To obtain a non-
zero estimate of A0 and hence the effect of the particles on
the contact angle, we must use the fact that the capillary
force is small but nonzero as it must be balanced by the
hydrodynamic force on the particle. Thus, we need an esti-
mate of the drag force. Since the Reynolds number of the
flow is small, the drag on a particle is given by

Fh = 6��a��Ur − �mdr0/dt� , �43�

where � is the viscosity of the liquid, � is the drag coeffi-
cient for a particle placed in a film through which there is a
mean liquid flow, �m is the drag coefficient for a particle
moving through a quiescent liquid film, and Ur is the average
undisturbed radial velocity of the fluid at r=r0. Estimates of
the drag coefficients are given later in Sec. IV A. The aver-
age radial velocity can be estimated using

Ur =
q�r0�

2�rh	�r0�
=

U0R2

r0h	�r0�
��1 − r0

2/R2�1/2 − �1 − r0
2/R2�2� ,

�44�

where q�r0� is the evaporation-induced volumetric flow rate
of the liquid through a cylindrical surface of radius r0 and
height h	�r0�. The first term on the extreme right-hand side
of the above expression accounts for the liquid evaporation
from r=r0 to r=R, while the second term corresponds to the
decrease in the volume of liquid for same values of r. For
small particles, the radial position of the particles is close to
R so that the last term in the above expression may be ne-
glected. Taking h	�2a, the above expression simplifies to
an approximate relation �for 
=R−r0�R�,

Ur =
U0

21/2�R

a
�� a

h0
�1/2

, �45�

where the use has been made of the relation �2a� / �R−r0�
��2h0� /Rs, both being equal to the contact angle �s. This
equation suggests that the smaller particles, being closer to
the drop edge, experience larger relative velocity.

SANGANI et al. PHYSICAL REVIEW E 80, 011603 �2009�

011603-8



The viscous drag force given by Eqs. �43� and �45� must
be balanced by the capillary force pulling the particle toward
the drop center. For a fixed protruding particle, dr0 /dt=0 and
the capillary force must equal the drag force. Thus,

F�

�a
= −

Fh

�a
−

�U0

�
�6��

21/2 ��R

a
�� a

h0
�1/2

. �46�

To determine A0 corresponding to this force, we note that
when Ca=�U0 /� is very small, �0 must be close to �p �cf.
Eq. �B6��. Let

�0 = �p + � with � � 1. �47�

For this limiting case, the contact line is in a plane nearly
parallel to the substrate, and according to the analysis pre-
sented in Sec. III,

A0 � − �a sin �p �48�

and

F�

�a
= 2�� sin �ph	� , �49�

where h	� = ��h	 /�r�r=r0
. Equating the above expression for

the capillary force to that required to overcome the viscous
drag force �cf. Eq. �46��, we obtain an estimate for �, which,
upon substitution into Eq. �48�, yields

A0 = aCa
3�

21/2h	�
�R

a
�� a

h0
�1/2

. �50�

This shows that, to leading order, the monopole A0 is pro-
portional to the capillary number. The derivative of h	 re-
quired in the above expression varies with time. We shall use
the initial value �−2h0�0�r0 /R2�−2h0�0� /R�. This will un-
derestimate the magnitude of A0 and hence the effect of the
particles on the contact line angle as h0�t� decreases with
time. On the other hand, the use of 
 in the denominator of
the right-hand side of Eq. �41� overestimates the effect of the
particles when the particle chain length becomes comparable
or greater than 
. The number of particles at the drop edge
can be obtained from the radial flow rate as given by

N =
3�tq�r0�

4�a3 =
3�tU0

21/2a
�R

a
�3/2� R

h0
�1/2

, �51�

where � is the volume fraction of the particles. In obtaining
the second equality, we have related q to the average radial
velocity Ur and used the approximate relation �Eq. �45�� for
the latter. Note also that we have assumed that the mean
particle velocity is the same as the fluid velocity and that no
particles have settled out. Substituting for A0 and N into Eq.
�41�, and rearranging, we obtain


tan �s�t�� = tan �s�0� −
8U0t

R
�1 −

9�

16nc

R4

a3h0
Ca�� .

�52�

The first term inside the square brackets represents the effect
of the decreasing volume of the drop due to evaporation,
while the second term represents the effect of the particles

protruding the gas-liquid interface near the drop edge. In
order that the contact line remains pinned, the contact angle
must not decrease with time. This requires that the term in-
side the square brackets is negative or

� 
 �Ca
R4

a3h0
� C 


16

9�nc
, �53�

indicating that larger volume fraction, smaller contact angle
at the substrate �large R /h0�, larger drop volume, and smaller
particle radius favor the contact line pinning.

A. Hydrodynamic drag coefficient

We now briefly digress and summarize some relevant re-
sults for the drag on a particle or a raw of particles in a film.
Recently, Ozarkar and Sangani �17� examined the problem of
determining the drag on a spherical particle resting on a sub-
strate in a film of height equal to the diameter of the particle.
The gas-liquid interface was nondeformable and stress-free.
The liquid flow far from the particle was assumed to be
parabolic with mean velocity U. The drag force was found to
be about 1.9 times the Stokes drag for this case. These au-
thors also gave an estimate of the drag coefficient �m on a
particle moving through a thin liquid film. This coefficient
diverges logarithmically as the gap between the particle and
the substrate becomes vanishingly small due to lubrication
effects. When the particle and the substrate are rough, one
may equate the gap to the roughness �Smart et al. �18,19�� to
estimate the sliding velocity of a particle in a film. The drag
on a chain of small number of touching fixed particles in a
film has also been computed by Ozarkar �20�, who found that
the drag per particle is smaller than for a single particle as
the fluid flows mostly around the chain of particles. The drag
will be dramatically higher, however, when the chain length
becomes large enough so that the fluid is forced to flow
through the gap between the particles. This will be the situ-
ation in the present case when the particle chain length be-
comes larger than 
, the distance between the particles and
the drop edge. The results for this case are not available at
present but the case of an infinitely long chain of touching
particles sandwiched between two stress-free boundaries has
been examined by Sangani and Behl �21� who found that the
drag on a particle in such an array is about 40 times the
Stokes drag. For two staggered rows of particles placed in
the flow, the drag coefficient rises to about 160.

In the present case of a fixed protruding particle, the drag
is expected to be higher that computed by Ozarkar and San-
gani, but in the absence of a more accurate estimate, we shall
take �=1.9, result corresponding to a single particle in a film
of same height as the particle diameter. This yields C
=0.94 /nc.

B. Comparison with experiments

We now compare the criterion given by Eq. �53� with the
experimental observations. Table I gives the experimental
data for suspensions at various particle radii and volume
fractions and the computed values of �. The radius of the
deposited suspension drop was determined after the evapo-
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ration was complete by examining the outer boundary of the
residue left on the substrate. A geometric mean of the maxi-
mum extent of the residue along two mutually perpendicular
directions divided by two was taken to be the radius of the
deposited drop. The radius thus determined is denoted by Rs.
Also shown in the table is the radius R of a droplet of same
volume of liquid free of particles. The latter is a function of
the ambient humidity and drop volume, while the former
also depends on the radius of the particles and their volume
fractions. Note that Rs is significantly smaller than R. The
spreading of the suspension drop placed on the substrate is
arrested by one of the two mechanisms: �i� the particles ad-
vected by the fluid and arriving near the drop edge will begin
to pin the contact line before the drop had the chance to fully
spread or �ii� the particles settle to the substrate and induce
drag on the spreading liquid slowing thereby its spread.
Since there is no simple theory to predict Rs given the drop
volume, particle radius, and volume fraction, we used R for
estimating �. We also took �=0.01 g /cm s and �
=20 dyn /cm in all cases.

The initial height h0 of the drop was estimated using
h0�0�=2V / ��R2�, where V is the volume of the drop. The
characteristic evaporation velocity U0 was estimated using
Eq. �4�. The diffusivity of water vapor in air was estimated
using Dg=0.223�T /273�1.5 cm2 /s. The temperature was
taken to be equal to 295 K. The time for the evaporation to
complete is also given in Table I. When the drop remains
pinned, this time can be related to the characteristic evapo-
ration velocity by

test =
h0�0�
4U0

. �54�

As seen in Table I, the estimates obtained are somewhat
lower than the experimentally determined values. On the

other hand, if we had used Rs instead of R, to estimate U0,
and, hence, the evaporation time, then we would have ob-
tained estimates for the evaporation times that are greater
than the experimental values. �Note that U0 is inversely pro-
portional to the radius of the drop while h0 is inversely pro-
portional to the square of the radius.� At any rate, the time
estimates are generally comparable and the agreement with
the experiments may be regarded as quite satisfactory.

As mentioned in Sec. II, we carried out experiments with
particles of diameters 1, 3, 10, 15, 25, 50, and 70 �m at
three to four different volume fractions and for two to three
different drop volumes. Due to space limitations, Table I
presents the data for the most relevant cases. More detailed
data are presented by Liu �13�. The suspensions of 1 �m
diameter particles pinned the contact line in all the cases
examined, whereas the particles of 10 �m diameter or
greater migrated toward the center of the drop. As mentioned
in Sec. II, the density difference between the particles and
the liquid ���=0.05 g /cm3� was not small enough to keep
the particles of 10 �m diameter or greater from settling out,
and therefore the data for these suspensions are not relevant
to the present study. The data for the case of 3 �m diameter
suspensions are perhaps the most interesting. The suspen-
sions with �=0.000 25 showed the depinning behavior while
the higher volume fractions showed pinning.

Of the three drop volumes examined for �=0.000 25, the
case that exhibited the best example of depinning corre-
sponded to the drop of volume 3 �l. For 1.5 and 5 �l vol-
ume drops, the contact line remained pinned for a consider-
able duration with the distance between the particle chain
and the drop edge �
� slowly increasing during this period. In
other words, only the particle chains were moving inward.
Note that if the contact line is pinned then the equilibrium
position r0 of the particle is given by h	�r0 , t��1.98a. This

TABLE I. Pinning/depinning behavior of suspensions for various particle diameters, drop volumes, and particle volume fractions.

2a
��m�

V
��l� H �

Rs

�mm�
R

�mm�
h0

��m�
U0

�cm/s�
texpt

�min�
test

�min� tring
� �

Pin �p�/
depin �d�

1 1.5 0.53 5�10−3 2.4 3.2 91 5.4�10−6 9.7 8.5 3�10−3 109 p

1 1.5 0.62 1�10−3 1.9 3.5 80 4.1�10−6 16.5 9.8 2�10−2 24.1 p

1 1.5 0.59 5�10−4 1.8 3.4 84 4.5�10−6 14.6 9.3 3�10−3 11.7 p

1 1.5 0.68 2.5�10−4 1.9 3.6 74 3.3�10−6 17.9 11.2 7�10−2 6.2 p

1 3.0 0.62 5�10−3 2.9 3.9 126 3.6�10−6 19.2 17.4 2�10−3 111 p

1 3.0 0.60 1�10−3 2.1 3.8 132 3.9�10−6 22.4 16.9 1�10−2 20.5 p

1 3.0 0.68 5�10−4 2.1 4.0 119 3.0�10−6 29.4 20.1 2�10−2 10.6 p

1 3.0 0.60 2.5�10−4 2.3 3.8 132 3.9�10−6 19.6 16.9 5�10−2 5.1 p

3 1.5 0.62 1�10−3 2.5 3.5 80 4.1�10−6 19.2 9.8 9�10−2 0.89 p

3 1.5 0.65 5�10−4 2.8 3.5 78 3.7�10−6 18.7 10.5 0.18 0.44 p

3 1.5 0.53 2.5�10−4 2.8 3.2 91 5.4�10−6 10.9 8.5 0.35 0.20 d/p

3 3.0 0.62 1�10−3 2.1 3.9 126 3.6�10−6 23.4 17.4 0.06 0.82 p

3 3.0 0.65 5�10−4 2.1 4.0 119 3.3�10−6 25.2 18.4 0.12 0.43 p

3 3.0 0.54 2.5�10−4 2.2 3.6 147 4.8�10−6 15.4 15.5 0.25 0.17 d

3 5.0 0.62 1�10−3 2.5 4.5 157 3.1�10−6 31.4 25.1 0.05 1.01 p

3 5.0 0.65 5�10−4 2.8 4.6 150 2.8�10−6 33.5 26.6 0.10 0.52 p

3 5.0 0.53 2.5�10−4 2.8 4.3 172 4.1�10−6 27.4 21.2 0.19 0.25 d/p

10 5.0 0.56 0.01 4.3 2.9 172 3.8�10−6 33.6 24.0 0.03 0.25 d
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corresponds to 
�0.99aR /h0�t�, so that 
 will increase with
time as h0�t� decreases due to evaporation. This suggests that
for considerable duration of time the particles were pinning
the contact line. In the later stages, both the particle chain
and the drop edge were observed to move inward, but we
also observed that very few new particles were arriving at the
drop edge just before the drop edge started to move inward.
Thus, for these two cases, we cannot claim unambiguously
that the particles do not pin the contact line. For the 3 �l
drop both the particle chain and drop edge had started mov-
ing inward much earlier in the process and one could notice
more particles arriving from the bulk even as the contact line
was receding. We also note that the time for drop evaporation
is significantly greater for the 5 �l drop than for the 3 �l
drop. The time for evaporation in a depinning drop with
shrinking radius is generally significantly smaller than that
for the pinned drop. This suggests that the behavior of 5 �l
drop displayed more characteristics of a pinned drop than a
depinned drop. Other factors being constant, we expect � to
increase with the increase in the drop volume. Thus, larger
drops should favor pinning. Interestingly, � for the 1.5 �l
volume drop in our experiments was greater than that for the
3 �l volume drop perhaps because the humidity was differ-
ent in the two experiments. Based on these observations, we
believe that we had a clear case of depinning for the 3 �l
volume drop and close to a pinned behavior for 1.5 and 5 �l
volume drops. � values for the latter may therefore be re-
garded as close to the critical value for pinning/depinning
transition. We therefore estimate that

C � 0.2. �55�

This estimate will be consistent with our theoretical estimate
if we take nc equal to 5, a reasonable number for the chains
initially formed. We hasten to stress, however, that more ex-
perimental work is needed to confirm the theory for the rea-
sons given below.

C. Discussion

One of the difficulties in determining if a given suspen-
sion drop depins according to the physics described in the
present study is that ideally one must ensure that there are
enough particles in the suspension to form a ring all around
the circumference of the drop. Since the particles tend to
nearly touch each other due to strong attractive capillary
forces, the number of particles required to form at least one
ring of touching particles is approximately given by N
=�R /a. Equation �51� gives us an estimate of the time re-
quired to form a single particle-wide ring,

tring
� 


tringU0

h0�0�
=

�

3�
� a3

R2h0
�1/2

. �56�

The nondimensional time tring
� for the ring formation for our

experimental conditions is given in Table I. This time must
ideally be much less than 1

4 , the nondimensional time for
complete drop evaporation �cf. Eq. �54��. We see that this
condition was not satisfied for our 3 �m diameter particles
with �=2.5�10−4. We therefore had to examine the videos
for the three volume cases carefully to determine if the de-

pinning happened toward the end of the experiment or much
earlier. Since our video was only focused on one long chain
it is possible that we observed both pinning and depinning
behaviors even though tring

� is comparably 1
4 .

As we mentioned earlier, our experiments were also af-
fected by sedimentation. The Stokes sedimentation velocity
Us= �2a2��g� / �9�� for 3 �m diameter particles is about 2
�10−5 cm /s. In 3 min, the particle settles about 40 �m.
This is about 10–15 % of the drop height. Thus, after about
3 min the volume fraction of the particles arriving near the
drop edge could have been reduced by about 15% and there-
fore the actual value of C might be that much greater. For
10 �m diameter particles the sedimentation velocity is ten
times greater and almost all the particles settle out. Thus
even though the case of �=0.01, 2a=10 �m, and V=5 �l
suspension listed in Table I gives �=0.25, we did not ob-
serve pinning. Finally, we should also mention that our the-
oretical estimate was based on small number of chains and
the drag coefficient � based on a single particle while we are
really more interested in assessing if a ring formed could be
stable enough to pin the contact line. We could have used the
drag coefficient corresponding to long chain of particles,
which, as mentioned earlier, could be O�40� or even higher.
For very long chains, however, the effect of the particles on
the contact angle also changes and it can shown that for the
case of a ring all around the drop edge, one must replace nc

in Eq. �41� by 2R. The resulting criterion for pinning, in lieu
of Eq. �53�, is �CaR4 / �a2h0

2��32 / �9��. For this criterion to
compare well with the depinning observed for the 3 �m
diameter particles, � is required to be of O�200� or even
greater. This appears excessively high drag coefficient even
for a chain of particles but the limited data we have cannot
be used to rule out this criterion.

Clearly, more carefully planned experiments are needed to
establish the validity of the criteria derived here.

V. CONCLUSIONS

Deegan et al. �1,2� provided basic mechanism for the ring
formation when a liquid containing particles is evaporated
from a substrate. The main premise of that mechanism is that
the evaporation rate near the drop edge is much greater than
near the drop center. The presence of the particles near the
contact line causes the contact line to remain pinned and
causes the liquid from the bulk of the drop to move toward
the drop edge causing thereby an accumulation of the par-
ticles near the drop edge. We found that not all particles,
however, are effective in pinning the contact line. The vol-
ume fraction of the particles must be large enough in order
that the rate at which the drop-substrate contact angle de-
creases due to evaporation is offset by the increase caused by
the new protruding particles. We suggest that the particles
will pin the contact line only when the criterion given by Eq.
�53� with C�0.2 is satisfied. According to this criterion,
whether the particles will facilitate the pinning of the contact
line depends not only on the particle size but also on particle
volume fraction, drop radius, evaporation rate, and the wet-
ting characteristics of the substrate. More experiments, how-
ever, are necessary to establish the validity of this criterion.
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APPENDIX A: GREEN’S FUNCTION FOR N PARTICLES
IN A CIRCULAR DOMAIN

The Green’s function satisfying Eqs. �23�–�25� is ex-
pressed as a sum of three parts,

G = Gs + Gr + Gv, �A1�

where Gs corresponds to the Green’s function with the N
singularities in an infinite domain, Gr is a regular solution of
the Laplace equation that renders Gs+Gr=0 at r=R, and Gv
is a regular solution of Poisson equation that renders the
integral of G over the circular domain r�R to vanish.

Using the method of finite Fourier transforms, it can be
shown that the singular part Gs is given by

Gs = � N ln r − �
j=1

	

�1/j��r0/r� jN cos�jN�� , r � r0

N ln r0 − �
j=1

	

�1/j��r/r0� jN cos�jN�� , r � r0.�
�A2�

The regular part is given by

Gr = − N ln R + �
j=1

	

�1/j��rr0/R2� jN cos�jN�� �A3�

and the part concerned with the volume of the liquid is given
by

Gv = N�1 −
r2

R2��1 −
r0

2

R2� . �A4�

For the purpose of determining h near a particle at r=r0 and
�=0, we need an expansion of G around that point,

G = ln�r� − r�0� − �N
2/R2��1 − r0
2/R2� + �

m=0

	

gm
m cos m� ,

�A5�

where 
= �r�−r�0�. Note that the first term on the right-hand
side of the above equation corresponds to the Green’s func-
tion for an isolated singularity at r�0 in an infinite domain for
which an equivalent Fourier series expansion is given by

ln�r� − r�0� = � ln r − �
j=1

	

�1/j��r0/r� j cos�j�� , r � r0

ln r0 − �
j=1

	

�1/j��r/r0� j cos�j�� , r � r0.�
�A6�

To determine the constants gm in Eq. �A5�, we combine Eqs.
�A5� and �A6� to yield, along �=0 and for r�r0,

Gr 
 G − ln�r� − r�0�

= �N − 1�ln r − N ln R

+ �
j=1

	

�1/j���r0r/R2� jN − �r0/r� jN + �r0/r� j� + Gv.

�A7�

Now using the Taylor series expansion

ln�1 − y� = − �
j=1

	

�1/j�yj , �A8�

we obtain

Gr = ln�1

r
� r

R
�N1 − �r0/r�N

1 − �r0/r�
1

1 − �rr0/R2�N� + Gv. �A9�

The constants gm in Eq. �A5� can now be evaluated from the
values Gr and its derivatives at r=r0. Thus, for example,
g0=Gr�r=r0�. Using L’Hopital’s rule we obtain

g0 = ln�Nr0
N−1

RN

1

1 − �r0/R�2N� + N�1 −
r0

2

R2�2

. �A10�

Similarly, the coefficient g1 is obtained by evaluating the
radial derivative of Gr at r=r0, which yields Eq. �31� given
in the main text.

APPENDIX B: CAPILLARY FORCE ON A PARTICLE
(MODEL A)

The force along the gas-liquid-particle contact line is
given by �Paunov et al. �16��

F� � =� ��cos �pd�l � n�p + sin �pn�pdl� , �B1�

with integration being along the contact line. In the above
equation, dl� represents the tangent vector along the contact
line. The first term on the right-hand side of the above equa-
tion is the component of the force tangent to the surface of
the sphere, while the second one is along the normal to the
surface of the particle. In the cylindrical coordinate system
passing through the test particle placed along the x1 axis, we
have

dl� = �dhc

d�
e�z +

d
c

d�
e�
 + 
ce���d� , �B2�

where �hc��� ,
c���� represent the liquid height and the con-
tact line radius along the contact line as functions of �. Since
the particles are equispaced, the net force on the test particle
is along the x1 axis. Using Eq. �15� for n�p, we find that

� �dl� � n�p�1 =
1

a
	

0

2�

d��cos �
c�hc − a�

− sin ��
cdhc/d
c − �hc − a��d
c/d�� ,

�B3�

where the subscript 1 refers to the x1 component of the inte-
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grand. Substituting for 
c from Eqs. �19� and �32� and using
boundary conditions �20� and �21� along the contact line, one
obtains

� �dl� � n�p�1 = − 2�
1 sin �0 tan �0. �B4�

Next, we have

� �n�pdl�1 = 	
0

2�

�
c/a�cos d�

��
c
2 + �dhc/d��2 + �d
c/d��2�1/2

� 	
0

2�

�
c
2/a�cos �d� = 2�
1 sin �0.

Here, the terms involving squares of 
c
−1dhc /d� and


c
−1d
c /d� are neglected with a relative error of O��s

2�.
Combining the two integrals we obtain

F�,1 = − 2��
1 tan �0 sin��0 − �p� . �B5�

The force due to uneven pressure distribution is given by

F� p = − 4�s	 n�pdA , �B6�

where the integration is to be carried out over the liquid-
wetted surface of the particles. It can be shown that the com-
ponent of this force along the x1 axis is given by

Fp,1 = − ��s
1a�− sin �0 tan �0 + cos �0 − cos �p� .

�B7�

APPENDIX C: ALTERNATE MODEL FOR CONTACT
LINE (METHOD B)

An alternate model of the contact line at particle surface is
depicted in Fig. 6. Here, we assume that the contact line is a
circle in a plane inclined at an angle � to the normal to the
substrate. Let 
� be the radius of the contact line and �� be
the polar angle in a cylindrical coordinate system with its z�
axis aligned along the normal to the contact line plane. The
formal solution is still given by Eq. �22� with r0 being now
defined as the distance of center of the contact line from the

centerline of the drop. As before, we truncate Eq. �22� to
keep only the terms with A0 and A1. Next, we multiply
boundary conditions �16� and �17� by d�� and cos ��d�� and
integrate from ��=0 to ��=2�, generating thereby a total of
four equations in the unknowns, A0, A1, r0, and � for selected
values of 
0, �p, �s, and a /R. The equations were nonlinear
and were solved using an iterative method. Knowing r0, �,
and 
0, the position of the center of the particle, and hence
h	, the height of the liquid in the absence of the particle, can
be determined. The capillary force on the particle can be
determined using Eq. �B1�. Simpson’s rule was used in all
numerical integrations involved in satisfying boundary con-
ditions �16� and �17� in the integral sense as described above
and for determining the capillary force.

Figure 7 compares the results obtained by the two models.
When �s is small compared to �p, the contact line plane is
nearly parallel to the substrate, and the predictions from the
two models are in good agreement �cf. Fig. 7�a��. Figures
7�b� and 8 show the results for �p��s, for which case model

FIG. 6. An alternate model for the contact line.
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FIG. 7. A comparison of the two models. The solid line repre-
sents the first model and the squares represent the alternate model.
�a� �p=0.2, �s=0.1; �b� �p=0.1, �s=0.15. For both cases, N=1, R
=2 mm, and a=0.5 �m. I and II denote the two branches of the
solution predicted by method B.
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A predicts 
1�
0 for some radial positions of the particle.
According to model B, two solutions are possible for some
radial positions of the particles. As seen in Fig. 8, there is an
abrupt transition from a branch of solutions in which the
contact line plane is significantly inclined to the substrate to
the one in which the contact line is approximately parallel to
the substrate. The former branch, referred to as branch I,

occurs only for small values of the contact line radius 
�, as
can be seen in Fig. 8�a�, which shows the angle � as a func-
tion of 
�. In branch I, the angle � is approximately given by

� = �s + cos−1�cos �s cos �p� . �C1�

As shown in Fig. 8�b�, the capillary force is positive for
branch I, indicating that the capillary force will push the
particle outward toward the drop edge resulting in the in-
crease in protrusion and hence 
� beyond the critical value
�approximately equal to 0.07a sin �p for the case shown in
Fig. 8� for which there is an abrupt transition to branch II.
Thus, the branch I solution is unlikely to be observed in
practice. Note that branch I occurs over very small range of
radial position and force and therefore appears essentially as
a point in Figs. 7�b� and 8�b�. �
� variations in Figs. 7�b� and
8�b� are much greater than in Fig. 7�a�.� A transition from
branch I to branch II, in which the contact line plane is
approximately parallel to the substrate, will lead to a state
indicated by D in the Fig. 8�b�. Since the capillary force at D
is positive, the particle will be forced outward toward the
drop edge. However, the particle cannot move toward the
drop edge as there is no continuation of the solution in
branch II beyond D. Note, however, that there are two solu-
tions for h	 corresponding to D �denoted by D and E�. 
� for
E is much greater than for D. The capillary force for state E
is negative and the particle will move radially inward, along
EB. At B, the force is zero and the particle will reach the
equilibrium position �provided that we completely neglect
the viscous force�.

Alternatively, we may examine what happens to a particle
that is carried by the fluid and first protrudes from the gas-
liquid interface, i.e., at h	=2a, represented by A in Fig. 8�b�.
The capillary force at A is negative and therefore the particle
will move inward along AEB and will come to rest at B
where the capillary force is vanishingly small. The next par-
ticle carried by the fluid will first protrude at a point indi-
cated by C for which h	 is the highest and r0 is the smallest.
The capillary force there is positive and the particle will
move outward along CE until it comes to rest at E. In sum-
mary, regardless of what the conditions are when the particle
protrudes, it will quickly come to the only equilibrium state
denoted by E. Note that the force versus particle position
curve is nearly independent of N, so that all particles would
roughly stop at essentially the same radial position. This is
consistent with the observation made earlier �cf. Fig. 1�.
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